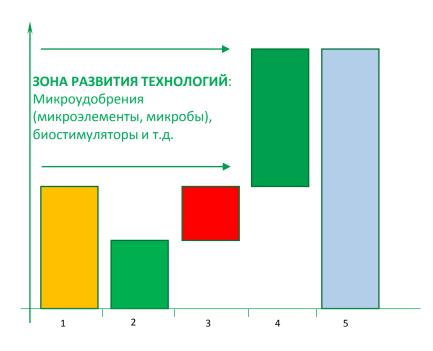


Агринос:


Продукты. Принципы действия. Способы применения.

Результаты применения.

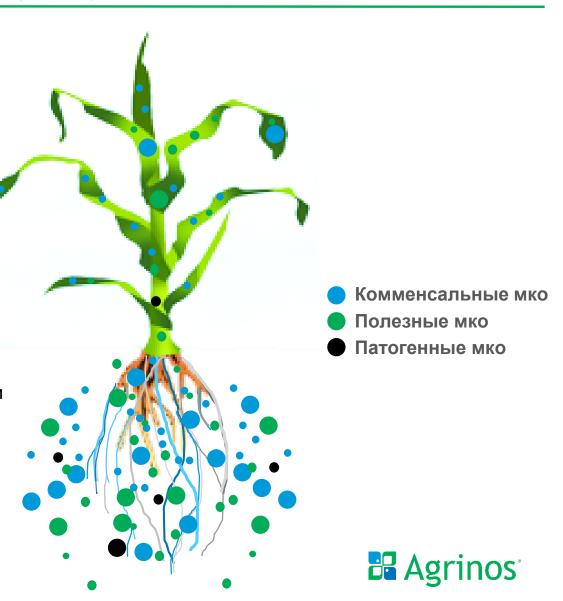
Возможности развития технологий выращивания с.-х. культур

Визуальная шкала на примере кукурузы

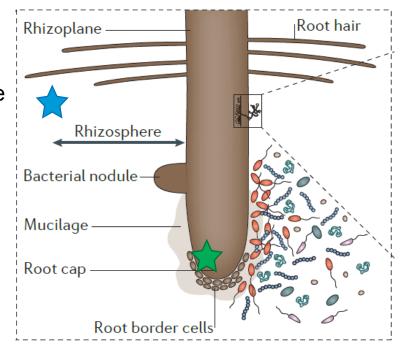
Зоны на визуальной шкале:

- 1 средняя урожайность кукурузы в 2016 р. (≈8 т/га)
- 2,3 уровень средней урожайности реализован, в основном, за счет организации системы питания и защиты растений
- 5 потенциал продуктивности гибридов (≈ 22 т/га)
- 4 разница между потенциалом продуктивности и средней урожайностью (≈14 т/га). ЗОНА РОЗВИТИЯ ТЕХНОЛОГИЙ

Агринос 1:


Концепт применения микробного консорциума для улучшения питания растений

Использование микробиома для увеличения продуктивности с.-х. культур


Микробиом – это комплекс взаимодействия микроорганизмов в ризосфере

- Полезные мко приносящие непосредственную пользу растению (симбиотрофы)
- Комменсальные поддерживающие растительный и почвенный микробиомы («полезные соседи»)
- Патогенные вредоносные для растения и микробиома, частью которого они являются

Взаимодействие между растением и микроорганизмами

- Ризосфера (Rhizosphere) узкая зона вокруг корня (до 3 мм), образованная под влиянием выделений растения и населена грибами, бактериями, архидной мкф, которые живут и развиваются в Ризодепозите (rhizodeposits)
- Ризодепозит (Rhizodeposits) (эксудаты) выделенные растением сахара, аминокислоты, другие органические соединения. Среди его функций:
 - Реактивация микрофлоры
 - Источник углерода для микроорганизмов
 - Сигнальные молекулы для стимуляции отношений с микрофлорой^{1,2}.

Растительные гормоны в малых концентрациях стимулируют взаимодействие с арбускулярной микрофлорой

Сигнальные молекулы (Флавоноиды) привлекают полезные микроорганизмы

¹⁻ How Plants Feed," The Scientist, December 2012.

²⁻ Parniske, M. Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nature Rev. Microbiol. 6, 763–775 (2008).

Агринос 1 – Преимущества от применения микробного консорциума

- Микробный ферментативный комменсализм (MFC) включает в себя Семейства аэробных, анаэробных и микроаэрофильных МКО (вместе)
- Комменсальный продукт исключительно стабилен
- Эффективно работает с одно- и двудольными растениями, на разных почвах и в разных природно- климатических зонах
- Можно применять в подавляющем большинстве баковых смесей (кроме имеющих сильно щелочную рН)

Функциональные преимущества

- Метаболизм азота (N)
- Метаболизм фосфора (Р)
- Метаболизм каллия (К)
- Метаболизм серы (S)
- Солестойкость и метаболизм микроэлементов
- Стимулирует хитинолитическую активность
- «Укрепляет»/стабилизирует почвенный биом

Чем Агринос 1 отличается от других продуктов?

Традиционные для рынка продукты	Агринос 1
• Содержат меньше микробов – (1-3 штаммов от нескольких Семейств).	• Продукт микробного ферментативного комменсализма (MFC) создан из многочисленных штаммов 10 Семейств МКО.
• Используют «общие" (часто используемые, простые в ферментации) штаммы МКО.	 Длительное хранение (24 месяца). Может использоваться для большинства видов баковых смесей, в т.ч. И с КАС.
 МКО индивидуально ферментированны и смешаны в конечном продукте (может быть смешано много штаммов) 	• Предваряет новый сегмент биоудобрений – живые микробные экосистемы

Агринос 2:

Регуляция влияния стресса с биостимуляторомантистрессантом

1 группа: Абиотические стрессовые факторы:

- Температурные:
 - Т ниже от потребности
 - Т выше от потребности
- Наличие воды:
 - Воды чрезмерно много затопление, подтопление:
 - нарушение газообмена асфиксия
 - нарушение питания
 - Воды меньше от потребности:
 - в почве
 - в воздухе
- Механические повреждения стихийными явлениями

2 группа: Антропогенные стрессовые факторы:

- «Осмотические градиенты»:
 - удобрения
 - пестициды (особенно фунгициды или баковые смеси с ними)
- «Температурные градиенты» (обпрыскивание водой, Т которой на 4-8°С отличается от Т растения)
- Химические ожоги:
 - КИСЛОТЫ
 - соли
 - «народные сурфактанты»
- Токсикация д.р.:
 - гербициды (в силу многих факторов)
 - фунгициды с высокой трансламинарной способностью
- Механические повреждения при контакте с с.-х. техникой

3 группа: Нормальные физиологические стрессовые явления:

- Налив зерна/плодоношение
- Изменение этапов роста на этапы розвития цветение
- Реакция на изменение длинны дня (как природная составляющая)
- Начало активного накопления вегетативной массы
- Включение в работу видов корневой системы, переход на обеспечение за счет фотосинтеза новообразованных листьев (злаковые например, кукуруза)
- Запасание питательных веществ до зимы (озимыми)

•

Виды вредоносного влияния стрессов

Вредоносное влияние стрессов:

- Повреждение или потеря
 - листовой поверхности
 - стебля
 - корневой системы
 - генеративных органов
- Остановка в росте и развитии

В чем главная вредоносность стрессов?

• Наибольший вред – <u>от остановки процессов роста и развития!!!</u>

Например:

- Снижение температуры ниже «биологического нуля» для растения – это остановка «всей фабрики, с выходом на плановую продуктивность» через 6...-20 дней иногда и позже (кукуруза, соя, подсолнечник – как примеры)
- Повышение температуры выше критических показателей это разрушение цепи транспорта сахаров. Сопровождается отмиранием тканей (из-за осмотических явлений)

— ...

Что произойдет:

- если на протяжении 25% времени своей вегетации (около 30 дней) жизнедеятельность кукурузы остановится?

АГРИНОС 2

Агринос 2 - уникальный биостимулятор-антистрессант, который получен ферментативным путем.

Его применение усиливает активность многих метаболических процессов в организме растения.

Агринос 2 – техническая спецификация продукта*

COMPONENT	RANGE*	ANALYSIS METHOD
Protein	5.0±0.5 %w/v (Crude) 1.2±0.5 %w/v (True)	AOAC 990.03 AOAC 941.04
Nitrogen	1.2±0.4 %w/v	AOAC 993.13
Potassium	0.7±0.2 %w/v	AOAC 985.01
Carbon	7.2±2.0 %w/v	ASTM D5373
Manganese	5.6±1.1 ppm	AOAC 985.01
Copper	6.0±4.0 ppm	AOAC 985.01
Iron	46.0±21.0 ppm	AOAC 985.01
Amino Acids	4.5±2.2 %w/v	AOAC 994.12 (Alt I & III) AOAC 988.15 AOAC 985.28
рН	4.0±0.1	Electrometric
Density	8.51 lb/gallon	Hydrometer

Перечень** Lаминокислот: Аланин Аспарагин Аспартикова кислота Глицин Глютамин Изолейцин Лейцин Лизин Метионин Фенилаланин Проллин Треонин

Валин

^{*} Указанные отклонения могут возникать в связи с сезонными изменениями содержания исходных питательных веществ в материале для ферментации;

^{**} показано 85% состава L-аминокислот.

Листовое применение аминокислот дает преимущества в критических условиях

Пути активизации жизнедеятельности	Функции L-аминокислот
Синтез протеинов (высокие температуры, сульфонил-мочевинные гербициды)	L-аминокислоты являются незаменимым компонентом растительных белков; они включаются в структурирующие, метаболические, транспортные и запасающие функции в процессе синтеза белков
Устойчивость к абиотическим стрессам	Применение L-аминокислот накануне стресса (лучше всего), на протяжении, или сразу после наступления стресса, доставляет биодоступные элементы непосредственно в клетку – поддерживая ее жизнедеятельность
Фотосинтез	L-глицин и L- глютаминовая кислоты являются базовыми в синтезе хлорофила
Работа устьиц	L-аминокислоти, например, L-глютаминовая кислота стимулирует открытие устьиц, стимулируя процесс фотосинтеза и помогая транспорту других биодоступных элементов
Хелатизирующие эффекты	L-глицин и L-цистеин, а также другие L-аминокислоты являются хелатизирующими агентами, помогающими адсорбировать и транспортировать питательные вещества через устьица
Продуцирование фитогормонов	L-метионин, L-триптофан та L-аргинин являются прекурсорами либо активаторами продуцирования фитогормонов. Изменение електронных потенциалов на клеточных мембранах модулирует продуцирование фитогормонов (н-р: этилен, абсцизовая кислота и др.)
Опыление/Завязывание/ Налив	Наличие L-проллина, L-лизина, L-метионина, L-глютаминовой кислоты – обязательное условие для нормального опыления и формирования завязи (фертильность пыльцы, длинна тычинок, размер пыляков,)

Чем Отличается Агринос 2 от других продуктов?

Традиционные для рынка продукты	Агринос 2
 Содержат один вид питательных веществ (либо аминокислоты и протеины – либо микроэлементы) Производятся методом химического гидролиза растительного сырья 	 Содержит комплекс биодоступных питательных элементов, которые растение может потреблять одновременно Применение этого комплекса сохраняет жизнедеятельность растений в стрессовых условиях на длительный период усиливая метаболизм по основным жизненным функциям клеток
• Используется «глубокая химическая экстракция» белков и аминокислот, что может привести к трудностям их усвоения растением	 Биоферментация сырья обеспечивает биодоступность элементов питания и сепарацию D-аминокислот бактериями (в растворе остаются только L-аминокислоты) Возможность смешивания с удобрениями и
• Смесь L и D-аминокислот	пестицидами

Схема применения Агринос на яблоне

Agrinos°

